Teorema de Pitágoras
Pitágoras es el matemático más conocido y un personaje muy célebre y apasionante en la historia de las ideas. Filósofo, matemático, sabio, investigador, naturalista, aventurero, místico, teólogo, profeta, pero ante todo maestro. Además de ser el principal responsable del origen en Grecia de la Matemática racional a través de la demostración, Pitágoras es inductor de buena parte de los elementos culturales que a lo largo del tiempo han ido forjando el pensamiento. Como rector de una comunidad que hacía de la pasión por el conocimiento el móvil principal de la existencia y sentido de la vida, Pitágoras acuñó los términos Filosofía (“amor a la sabiduría”) y Matemática (“lo que se conoce, lo que se aprende”) para describir una actividad intelectual que vinculaba armoniosamente Ciencia, Filosofía, Matemática, Música y Cosmología.
La frase pitagórica “el número es la esencia de todas las cosas” es el antecedente de “la naturaleza está escrita con caracteres matemáticos” de Galileo y el fundamento filosófico-aritmético de la digitalización informática actual.
Pitágoras descubrió de forma empírica la base aritmética de la Música e ideó la primigenia cosmología no geocéntrica. Realizó la primera clasificación de los números y estudió los números perfectos, amigos y poligonales. En geometría se le atribuye muchos de los teoremas elementales escolares sobre triángulos, polígonos, poliedros, rectas paralelas, círculos, esferas, sección áurea, etc., resultados que nutren una gran parte de Los Elementos de Euclides.
Pero sin duda lo más famoso es el llamado Teorema de Pitágoras, la relación matemática que más recordamos de la escuela; la más importante, útil y popular; la fuente de multitud de relaciones métricas, la que más nombres y pruebas ha recibido, la de mayor valor práctico, teórico y didáctico.
Como filósofo del número, Pitágoras realiza el milagro griego en Matemáticas, crea las raíces de la Filosofía y la Matemática y se sitúa en el umbral del pensamiento racional como cuna del saber y del conocimiento.
Demostración algebraica del teorema de Pitágoras
¿Qué es el teorema de Pitágoras?
Tenemos una página que explica el Teorema de Pitágoras, pero aquí tienes un breve resumen:
El teorema de Pitágoras dice que en un triángulo rectángulo, el cuadrado de a (a²) más el cuadrado de b (b²) es igual el cuadrado de c (c²):
a2 + b2 = c2
|
Demostración del teorema de Pitágoras usando álgebra
Podemos ver que a2 + b2 = c2 usando el Álgebra
Mira este diagrama... tiene dentro un triángulo "abc" (en realidad tiene cuatro):
Es un gran cuadrado, cada lado mide a+b, así que el área es:
A = (a+b)(a+b)
Ahora sumamos las áreas de los trozos más pequeños:
Primero, el cuadrado pequeño (inclinado) tiene área | A = c² | |
Y hay cuatro triángulos, cada uno con área | A =½ab | |
Así que los cuatro juntos son | A = 4(½ab) = 2ab | |
Si sumamos el cuadrado inclinado y los 4 triángulos da: | A = c²+2ab |
El área del cuadrado grande es igual al área del cuadrado inclinado y los 4 triángulos. Esto lo escribimos así:
(a+b)(a+b) = c²+2ab
Ahora, vamos a operar a ver si nos sale el teorema de Pitágoras:
Empezamos con: | (a+b)(a+b) = c²+2ab | |
Desarrollamos (a+b)(a+b): | a²+2ab+b² = c²+2ab | |
Restamos "2ab" de los dos lados: | a²+b² = c² | |
No hay comentarios:
Publicar un comentario